Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Gene ; 850: 146925, 2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36191823

RESUMO

Spiders (Araneae) are the most abundant terrestrial predators and megadiverse on earth. In recent years, the mitochondrial genome of a great diversity of species has been sequenced, mainly for ecological and commercial purposes. These studies have uncovered the existence of a variety of mitochondrial genome rearrangements. However, there is poor genetic information in several taxonomic families of spiders. We have sequenced the complete genome of Phoneutria depilata (Ctenidae) and, based on this, extract the mitogenomes of other ctenid species from published transcriptomes to perform a comparative study among spider species to determine the relationship between the level of mitochondrial rearrangements and its possible relationship with molecular variability in spiders. Complete mitochondrial genomes of eighteen spiders (including eight Ctenidae species) were obtained by two different methodologies (sequencing and transcriptome extraction). Fifty-eight spider mitochondrial genomes were downloaded from the NCBI database for gene order analysis. After verifying the annotation of each mitochondrial gene, a phylogenetic and a gene order analysis from 76 spider mitochondrial genomes were carried out. Our results show a high rate of annotation error in the published spider mitochondrial genomes, which could lead to errors in phylogenetic inference. Moreover, to provide new mitochondrial genomes in spiders by two different methodologies to obtain them, our analysis identifies six different mitochondrial architectures among all spiders. Translocation or tandem duplication random loss (TDRL) events in tRNA genes were identified to explain the evolution of the spider mitochondrial genome. In addition, our findings provide new insights into spider mitochondrial evolution.


Assuntos
Genoma Mitocondrial , Aranhas , Animais , Aranhas/genética , Filogenia , Genes Mitocondriais , RNA de Transferência/genética
2.
Cell ; 185(10): 1646-1660.e18, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35447073

RESUMO

Incomplete lineage sorting (ILS) makes ancestral genetic polymorphisms persist during rapid speciation events, inducing incongruences between gene trees and species trees. ILS has complicated phylogenetic inference in many lineages, including hominids. However, we lack empirical evidence that ILS leads to incongruent phenotypic variation. Here, we performed phylogenomic analyses to show that the South American monito del monte is the sister lineage of all Australian marsupials, although over 31% of its genome is closer to the Diprotodontia than to other Australian groups due to ILS during ancient radiation. Pervasive conflicting phylogenetic signals across the whole genome are consistent with some of the morphological variation among extant marsupials. We detected hundreds of genes that experienced stochastic fixation during ILS, encoding the same amino acids in non-sister species. Using functional experiments, we confirm how ILS may have directly contributed to hemiplasy in morphological traits that were established during rapid marsupial speciation ca. 60 mya.


Assuntos
Marsupiais , Animais , Austrália , Evolução Molecular , Especiação Genética , Genoma , Marsupiais/genética , Fenótipo , Filogenia
3.
Physiol Biochem Zool ; 95(3): 239-250, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35443149

RESUMO

AbstractHibernation (i.e., seasonal or multiday torpor) has been described in mammals from five continents and represents an important adaptation for energy economy. However, direct quantifications of energy savings by hibernation are challenging because of the complexities of estimating energy expenditure in the field. Here, we applied quantitative magnetic resonance to determine body fat and body composition in hibernating Dromiciops gliroides (monito del monte). During an experimental period of 31 d in winter, fat was significantly reduced by 5.72±0.45 g, and lean mass was significantly reduced by 2.05±0.14 g. This fat and lean mass consumption is equivalent to a daily energy expenditure of hibernation (DEEH) of 8.89±0.6 kJ d-1, representing 13.4% of basal metabolic rate, with a proportional contribution of fat and lean mass consumption to DEEH of 81% and 18%, respectively. During the deep heterothermic bouts of monitos, body temperature remained 0.41°C ± 0.2°C above ambient temperature, typical of hibernators. Animals shut down metabolism and passively cool down to a critical defended temperature of 5.0°C ± 0.1°C, where they begin thermoregulation in torpor. Using temperature data loggers, we obtained an empirical estimation of minimum thermal conductance of 3.37±0.19 J g-1 h-1 °C-1, which is 107% of the expectation by allometric equations. With this, we parameterized body temperature/ambient temperature time series to calculate torpor parameters and metabolic rates in euthermia and torpor. Whereas the acute metabolic fall in each torpor episode is about 96%, the energy saved by hibernation is 88% (compared with the DEE of active animals), which coincides with values from the literature at similar body mass. Thus, estimating body composition provides a simple method to measure the energy saved by hibernation in mammals.


Assuntos
Hibernação , Marsupiais , Torpor , Animais , Composição Corporal , Temperatura Corporal , Metabolismo Energético , Mamíferos , Marsupiais/metabolismo , América do Sul
4.
Ecol Evol ; 12(3): e8645, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35261741

RESUMO

The arboreal marsupial monito del monte (genus Dromiciops, with two recognized species) is a paradigmatic mammal. It is the sole living representative of the order Microbiotheria, the ancestor lineage of Australian marsupials. Also, this marsupial is the unique frugivorous mammal in the temperate rainforest, being the main seed disperser of several endemic plants of this ecosystem, thus acting as keystone species. Dromiciops is also one of the few hibernating mammals in South America, spending half of the year in a physiological dormancy where metabolism is reduced to 10% of normal levels. This capacity to reduce energy expenditure in winter contrasts with the enormous energy turnover rate they experience in spring and summer. The unique life history strategies of this living Microbiotheria, characterized by an alternation of life in the slow and fast lanes, putatively represent ancestral traits that permitted these cold-adapted mammals to survive in this environment. Here, we describe the ecological role of this emblematic marsupial, summarizing the ecophysiology of hibernation and sociality, updated phylogeographic relationships, reproductive cycle, trophic relationships, mutualisms, conservation, and threats. This marsupial shows high densities, despite presenting slow reproductive rates, a paradox explained by the unique characteristics of its three-dimensional habitat. We finally suggest immediate actions to protect these species that may be threatened in the near future due to habitat destruction and climate change.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...